资讯

知识

当前位置:

学生网

 > 

知识解答

 > 

反三角函数如何求导

反三角函数如何求导

2023-12-25 16:00 658人阅读

三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。

反三角函数如何求导

反三角函数导数:(arcsinx)'=1/√(1-x2);(arccosx)'=-1/√(1-x2);(arctanx)'=1/(1+x2);(arccotx)'=-1/(1+x2)。

反正弦函数的求导过程:

y=arcsinx,

那么,siny=x,

求导得到,cosy*y'=1

即y'=1/cosy=1/√[1-(siny)?]=1/√(1-x?)

反余弦函数的求导:

(arccosx)'

=(π/2-arcsinx)'

=-(arcsin X)'

=-1/√(1-x^2)

反三角函数公式有哪些

反正弦函数的求导:(arcsinx)'=1/√(1-x^2)

反余弦函数的求导:(arccosx)'=-1/√(1-x^2)

反正切函数的求导:(arctanx)'=1/(1+x^2)

反余切函数的求导:(arccotx)'=-1/(1+x^2)

求反三角函数的方法

①先求原函数的值域和定义域

②用y来表达x的式子。

③交换x和y的位置。

例如:求y=e^x(x∈R,y>0)的反函数。

解:定义域为一切实数 ,值域大于0,。

用y来表达有x的式子。

x=ln y 交换x和y的位置 得到: y=ln x。

所以 y=e^x(x∈R,y>0的反函数为y=ln x(x >0,y∈R)。

反三角函数怎么算

反三角函数的运算主要包括三类:一类是直接求反三角函数的值,它的值是一个角度,或弧度;第二类是运用反三角函数的运算法则和公式进行运算;最后一类主要出现在高数中,包括求与反三角函数有关的极限、导数、微分和积分等。

比如,sin30度=1/2,所以arcsin(1/2)=30度。可以近似地把求反三角函数的过程,看作是求三角函数的逆过程。因为它们之间带有互为反函数的意义,不过它们只在三角函数的一个特定周期内互为反函数,这点一定要注意。

另外,比如15度,18度,75度等,这些可以利用三角函数公式求得三角函数值的角度或弧度,它们的三角函数值的反三角函数,也是可求的。例如:arcsin((根号6-根号2)/4)=15度。

相关资讯

最新资讯