资讯

知识

当前位置:

学生网

 > 

知识解答

 > 

等式的基本性质有哪些

等式的基本性质有哪些

2023-12-28 14:58 518人阅读

等式的基本性质:若a=b,那么有a+c=b+c;若a=b,那么有a·c=b·c或a÷c=b÷c;若a=b,那么有a^c=b^c或(c次根号a)=(c次根号b)。

等式的基本性质有哪些

1、等式两边同时加上(或减去)同一个整式,等式仍然成立。

2、等式两边同时乘或除以同一个不为0的整式,等式仍然成立。

3、等式具有传递性。

若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an。

不等式的基本性质

1、不等式两边同时加或减去同一个数,不等号方向不变。这个性质说明,在不等式的两边进行相同的加法或减法运算,不会改变不等式的方向。例如,如果 a > b,那么 a + c > b + c,a - d > b - d。这个性质在日常生活中的很多场合都有应用,比如在比较两个数量大小时,我们可以把相同的部分减去,再比较剩余部分的大小。

2、不等式两边同时乘以或除以同一个正数,不等号方向不变。这个性质表明,在不等式的两边进行相同的乘法或除法运算,如果乘除的是正数,那么不等式的方向不会改变。例如,如果 a > b,c > 0,那么 ac > bc,a/c > b/c。这个性质在数学证明和计算中非常有用,可以帮助我们在不改变不等式方向的前提下,对不等式进行变形和化简。

3、不等式两边同时乘以或除以同一个负数,不等号方向发生改变。这个性质说明,如果我们在不等式的两边进行相同的乘法或除法运算,但乘除的是负数,那么不等式的方向会发生改变。例如,如果 a > b,c < 0,那么 ac < bc,a/c < b/c。这个性质也是数学中常用的一个技巧,通过乘以负数来改变不等式的方向,从而达到证明或化简的目的。

不等式的常用定理

①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)

③如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。

④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。

相关资讯

最新资讯